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ABSTRACT 
Let P(z) be a polynomial of degree n with real or complex coefficients. In this  paper, we shall obtain several 

generalizations and extensions of a well-known result of  Enestrom and Kakeya about the location of the zeros of a 

polynomial. 
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     INTRODUCTION
Introduction and Statement of Results 

The following well-known result in the theory of distribution of the zeros of polynomials is due to Enestrom and 

Kakeya     (  for reference see [1]) 

 

Theorem  A  (Enestrom-Kakeya).  If 

                                    P(z)= 01

1

1 .... azazaza n

n

n

n  

 , 

Is a polynomial of degree n such that 

)1(0... 011   aaaa nn  

Then all the zeros of P(z) lie in     .1z  

This result was proved by Enestrom[5], independently by Kakeya[9] and Hurwitz[7].we now apply this result to P(tz) 

to obtain the following more general result: 

 

Theorem  B.    If 

                                    P(z)= 01

1

1 .... azazaza n

n

n

n  

 , 

Is a polynomial of degree n such that 

)2(0... 01

1

1  

 atatata n

n

n

n  

Then all the zeros of P(z) lie in     .tz   

This theorem has been extended and sharpened in various ways(  see Krishnala[10],Cargo and Shisha [3]  

Joyal,Labelle and Rehman [8],  Govil and Rahman [6]  etc.). 

As a compact generalization of  Theorems  A and B    Aziz and Mohammad [1] have used Schwarz lemma and proved: 

 

Theorem  C.  If 

                                    P(z)= 01

1

1 .... azazaza n

n

n

n  

 , 

Is a polynomial of degree n   with real and positive coefficients  .If    021  tt  Can be found such that 

.1,...,2,1,0)( 221121   nrattatta rrr                                 (3) 

Where     )0( 11   naa  then all the zeros of P(z) lie in .1tz   

For  ,02 t this reduces to Theorem B and for  ,0,1 21  tt this reduces to Enestrom- Kakeya Theorem. 

Taking   monotonicity    of the coefficients of a polynomial Joyal, Labelle and Rahman  [8] proved: 

Theorem  D. Let 

http://www.ijesrt.com/


[Zargar, 4(3): March, 2015]   ISSN: 2277-9655 

                                                                                                 Scientific Journal Impact Factor: 3.449 

   (ISRA), Impact Factor: 2.114 
   

http: // www.ijesrt.com                  © International Journal of Engineering Sciences & Research Technology 

 [625] 

                                    P(z)= 01
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Is a polynomial of degree n such that 
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then all the zeros of P(z) lie in     
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 As a generalization of Theorem D . Dewan and Bidkham [4] have obtained the following result:  

  

Theorem  E. Let 

                                    P(z)= 01
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be a polynomial of degree n, such that  t>0   and   ,0 nk         
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then all the zeros of P(z) lie in the circle     )6(.)(
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The main aim of this paper is to establish a compact generalization of Theorems C and E and an extension of Theorem 

E. We first present: 

 

Theorem  1.1.     Let 

                                    P(z)= 01
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       such that          021  tt
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                               .1,...,2,1,0)( 221121   nrattatta rrr                                 (7)   
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Remark 1.       Let 

                                    P(z)= 01

1

1 .... azazaza n

n

n

n  

 , 

be  a polynomial of degree n   with real and positive coefficients  .Taking k=n in Theorem 1.1 

       and noting that     )( 00 aa  =0,      0)(  nn aa  , . So that 

                                                )
2

(
1

1

nkn
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=

n

nn

a

aa 2
=

n

n

a

a
=1. 

It follows that all the zeros of P(z lie in  .1tz  which is precisely Theorem C. 

Remark 2.      If we take  02 t     and .If  tt 1      in Theorem 1.1   we get   Theorem E. 

Next, we shall present the following extension of  Theorem E. 

 

http://www.ijesrt.com/


[Zargar, 4(3): March, 2015]   ISSN: 2277-9655 

                                                                                                 Scientific Journal Impact Factor: 3.449 

   (ISRA), Impact Factor: 2.114 
   

http: // www.ijesrt.com                  © International Journal of Engineering Sciences & Research Technology 

 [626] 

Theorem 1.2. . Let 
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and if  0a  is any real or complex number,then all the zeros of P(z) lie in the circle    
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Remark 3. If  0a  is real such that  
t

a
a 0

1  ,then we immediately get theorem E. 

  If we take t=1 and k=n in Theorem 1.2, we get the following result: 

 

Corollary 1.      Let 

                                    P(z)= 01
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be a polynomial of degree n such that 
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and if 0a  is any real or complex number, then all the zeros of P(z) lie in    
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If ,01 aa   then corollary 1 reduces to Theorem D. 

For the proofs of these theorems we need the following lemma ,which is due to Aziz and Mohammad[2]. 

      

Lemma.  Let 

                                    P(z)= 10.... 01  npazazaza p

p

n

n , 

be a polynomial of degree n with complex coefficients, then for every real  number r ,  all the zeros of P(z) lie in  the 

circle   
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Proofs of Theorems 
Proof of Theorem 1.1.   Consider the polynomial 
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     Since G(z) is a polynomial of degree n+2.Applying the above lemma, it follows that all the zeros of G(z)  lie in the 

circle 
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      Since all the zeros of P(z) are also the zeros of G(z) ,it follows that all the zeros P(z) lie in the circle defined by 

(8) and this completes the proof of Theorem 1.1. 

 

Proof of Theorem  1.2. Consider the polynomial 
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  Since  F(z) is a polynomial of degree n+1, using the above lemma to F(z) with p=n and r=t, it follows 

        that all the zeros of F(z ) lie in the circle     
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 (by hypothesis) 

Hence all the zeros of F(z) lie in 
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As all the zeros of P(z) are also the zeros of F(z), the result follows and hence Theorem 1.2 is proved completely. 
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