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ABSTRACT
Let P(z) be a polynomial of degree n with real or complex coefficients. In this paper, we shall obtain several
generalizations and extensions of a well-known result of Enestrom and Kakeya about the location of the zeros of a
polynomial.
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INTRODUCTION

Introduction and Statement of Results

The following well-known result in the theory of distribution of the zeros of polynomials is due to Enestrom and
Kakeya ( for reference see [1])

Theorem A (Enestrom-Kakeya). If
P@)=a,z" +a, 2" +...+az +a,,
Is a polynomial of degree n such that
a,za,; =>...2a 2a,>0 @
Then all the zeros of P(z) lie in |Z| <1

This result was proved by Enestrom[5], independently by Kakeya[9] and Hurwitz[7].we now apply this result to P(tz)
to obtain the following more general result:

Theorem B. If
P@=a,z" +a, 2" +...+3az7 +a,,
Is a polynomial of degree n such that
at">a t">.>at>a,>0 2)
Then all the zeros of P(z) lie in |Z| <t

This theorem has been extended and sharpened in various ways( see Krishnala[10],Cargo and Shisha [3]
Joyal,Labelle and Rehman [8], Govil and Rahman [6] etc.).
As a compact generalization of Theorems Aand B Aziz and Mohammad [1] have used Schwarz lemma and proved:

Theorem C. If
P2)=a,z" +a, 2" +...+az +a,,
Is a polynomial of degree n  with real and positive coefficients .If 't >t, >0 Can be found such that
att,+a ,(t -t)+a , >0, r=12,.,n+1. ®)
Where (a, =a,,, = 0) then all the zeros of P(z) lie in |Z| <t,.

For t, = 0, this reduces to Theorem B and for t, = 1, t,= 0, this reduces to Enestrom- Kakeya Theorem.

Taking monotonicity of the coefficients of a polynomial Joyal, Labelle and Rahman [8] proved:
Theorem D. Let
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P@)=a,z" +a, 2" +...+az +a,,
Is a polynomial of degree n such that

then all the zeros of P(z) lie in
(4).
As a generalization of Theorem D . Dewan and Bidkham [4] have obtained the following result:
Theorem E. Let
P@)=a,z" +a, 2" +...+az +a,,
be a polynomial of degree n, such that t>0 and 0 <k <n,

at"<a t"'<..<t‘a >t“"a_, >..>at>a, ©)

t |, 24 1
then all the zeros of P(z) lie in the circle |z < a |{ o —x —an)+t—n(|a0|—a0)}. (6)

The main aim of this paper is to establish a compact generalization of Theorems C and E and an extension of Theorem
E. We first present:

Theorem 1.1. Let
P@)=a,z" +a, 2" +...+az7 +a,,
be a polynomial of degree n  with real and positive coefficients .If t, = 0 and t, befound
such that t,>t, 20 ,

att,+a ,(t -t,)+a _, >0, r=212,..,n+1 @)
and
att,+a ,(t -t)+a,, <0, r=k+2,..,n+1

Where (a_, =a,,, =0) then all the zeros of P(z) lie in

2 t, +t
| | |a |{ (S ak _an)-|-(1t"‘n 2) (|a0| a,) +t, ( nk;il _a +|an|)}
” 8)

1 l

Remark 1. Let
P)=a,2" +a, 2" +...+az +a,,
be a polynomial of degree n with real and positive coefficients .Taking k=n in Theorem 1.1
and noting that (|ao|—a0) =0, (|an| —a,)=0,.So that

1 2a 2a. —a, a
—( 7k —a ):#: n—1.
™ fa [y

It follows that all the zeros of P(z lie in |Z| <t,. which is precisely Theorem C.

Remark2. Ifwetake t, =0 and.If t, =t inTheorem1.1 weget TheoremE.
Next, we shall present the following extension of Theorem E.
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Theorem 1.2. . Let
P@=a,2"+a,,2" " +..+aZ +a,
be a polynomial of degree n, such that for some t>0 and 0<k <n,

a_t"'<a t"?<.<t“"a >t‘a,>..>at>a 9)
and if @, is any real or complex number,then all the zeros of P(z) lie in the circle
t | 2a 1
) |{ k—an)+t—n(|a0|—ta1+|tal—a0|)}. (10)

a,
Remark 3. If @, isrealsuchthat a, = — : ;then we immediately get theorem E.

If we take t=1 and k=n in Theorem 1.2, we get the following result:

Corollary 1.  Let
P@)=a,z" +a, 2" +...+az +a,,
be a polynomial of degree n such that
a, za, ;2.2 24a,,
and if @, is any real or complex number, then all the zeros of P(z) lie in
a, —a, +|ay|+[a, - a0|
2|

2 <

If &, = a,, then corollary 1 reduces to Theorem D.
For the proofs of these theorems we need the following lemma ,which is due to Aziz and Mohammad[2].

Lemma. Let
P@=a,z"+a,z" +...+az +a, 0<p<n-1,
be a polynomial of degree n with complex coefficients, then for every real number r, all the zeros of P(z) lie in the

circle
P oa.
HE Max{ D ,_1}

hl
Sa,r

Proofs of Theorems
Proof of Theorem 1.1. Consider the polynomial

G(2) =t - ), - 2)P(2)
= (tt, +(t -t,)z-2°)(a,z2" +a, 2" +..+az +a,)
- anZn+2 +{(t1 _tZ)an—l - an—z}zn+1 t "‘{aztltz + (tl _tz)aﬂ_ - a-o}z2
+{att, + (4, —t,)a}z + agtt,

n+l

4 Z{ajtltz +(t, _tz)aj—l - ajfz}zj (@ =2a,,=0)
j=0

Since G(z) is a polynomial of degree n+2.Applying the above lemma, it follows that all the zeros of G(z) lie in the
circle
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|Z|<Max{t1,zatt Gl Y E L E R }

—j-1
j=0 |an| tln :
Now,
ni att, +(t,-t)a,-a_, 1 |
—j-1
j=0 |an| t1nJ ‘
E[at aj—l aJ 1t aj 2 ]
| n| = t l tln J+1 tln jH
1 n+l . n+l
Rt e k-
n||i=0 1 i=0 [
:tl
Since
_ i ajtltz + (tl _t2)aj—l _aj—z 1 |
1~ —j1
10 2| ! ‘
3 le ajtit, + (6 ~t,)a, —a,,|
j=0 |an |t1n_1_1 ‘
But
nil: a;tit, + t, _tz)aj—l —a;, 1
j=0 |an| tln_J_l‘
<in§‘t ta; A, | @1ta, a5,
|an| ~ 2 tln—J+1 t1n—j+1 |a | tn j+l t:Ln—JJrl
ki a. f t, |ha;, a,
= —| + —= 2 — :
|a | n— J+l t1n—j+l frarm |an| tln—JJrl tln—JJrl
kil: 1 |ta;, B aj__z . nil: i tlaj_—l B aj—_z
|a | n j+l tln—j+1 P |an| tln—J+1 tln—J+1
1:2 |a0 | ai a0 a2 al ak ak—l a'k+1 ak+2 a’n—Z a'n—l a‘n—2
—— e+ — - —— — ..+ — — +...+ — - —a, +|a +
|an| {tln tln—l tln tln—z t:Ln—l t1n—k tln—k+l tln—k+1 t1n—k+2 tlZ t1 tl n | n|
1 2] L L S T O 2 . 7 I = P Py
|an| tln—l tan tln—l tln—k—k t1n—k+1 t:Ln—k t1n—k+1 t1 n-1 n-1 n
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2a t +t 23,
= {tl(_k_an)+ ( . n 2) (|a0|_a0)+t2( t nﬁ;l _an +|an|)}

tlrFk tl 1

Since all the zeros of P(z) are also the zeros of G(z) ,it follows that all the zeros P(z) lie in the circle defined by
(8) and this completes the proof of Theorem 1.1.

Proof of Theorem 1.2. Consider the polynomial
F(z)=(t-2)P(2)
=—az"+(ta,—a,,)2" +..+(ta, —a,)z +a,t
n
=—-a, 2" +) (ta; —a;,)7’ (a, =0)
j=0

Since F(z) is a polynomial of degree n+1, using the above lemma to F(z) with p=n and r=t, it follows
that all the zeros of F(z ) lie in the circle

n ftay —a,| 1
7| < Maxdt, > L =
| | JZ_(; |an| tn—j

R taJ—aH‘ 1
_Jzo |an| tn—J
Since
Cleta-an) 1] _afe-ag 1
I I

tn—k -

t |,2a 1
:m{( cT) (12| —ta, +fta, - aol)} (by hypothesis)
n
Hence all the zeros of F(z) lie in

t 2a 1
|z|sm{(tn'; —an)+t—n(|a0|—tal+|tal—a0|)}
n

As all the zeros of P(z) are also the zeros of F(z), the result follows and hence Theorem 1.2 is proved completely.
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